Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this research study, the fracture strength of flat 10 mm thick annealed glass sheets having an abrasive water-jet cut surface and bearing against a transparent interface material is experimentally investigated. The transparent interface material is necessary to provide axial-compressive force continuity in modular compression-dominant all- glass shell structures. A series of short glass columns were tested in axial compression under a variety of load cases, which included cyclic, creep, and monotonic-to-fracture loading. A target glass fracture bearing stress of 36.6 MPa is identified and represents an upper bound bearing stress for annealed glass compression members failing in a flexural buckling mode. The study concludes the transparent thermoplastic material, known as Surlyn, was able to achieve a fracture strength that exceeds the target value and that the fracture strength is not affected by cyclic or creep loading. Consequently, column-related failure limit states will occur before glass fracture is associated with interface bearing. Glass fracture occurs in Type-I mode, reflecting the presence of interface tensile stress. Furthermore, the monotonic bearing stiffness in the service range of 5 to 15 MPa is increased by 20 % and 16 % for samples subjected to cyclic and creep loading, respectively, relative to monotonic-only samples.more » « lessFree, publicly-accessible full text available February 1, 2026
-
In this experimental research a transparent thermoplastic manufactured by the DOW Corporation and known as Surlyn is investigated for use as an interface material in fabrication of an all-glass pedestrian bridge. The bridge is modular in construction and fabricated from a series of interlocking hollow glass units (HGU) that are geometrically arranged to form a compression dominant structural system. Surlyn is used as a friction-based interface between neighbouring HGUs preventing direct glass-to-glass contact. An experimental program consisting of axial loading of short glass columns (SGC) sandwiched between Surlyn sheets is used to quantify the bearing capacity at which glass fracture occurs at the glass-Surlyn interface location. Applied load cases include 100,000 cycles of cyclic load followed by 12 hours of sustained load followed by monotonic load to cracking, and monotonic loading to cracking with no previous load history. Test results show that Surlyn functions as an effective interface material with glass fracture occurring at bearing stress levels in excess of the column-action capacity of an individual HGU. Furthermore, load cycling and creep loading had no effect on the glass fracture capacity. However, the load history had a nominal effect on Surlyn, increasing stiffness and reducing deformation.more » « less
-
null (Ed.)This research presents an experimental program executed to understand the strength and stiffness properties of hollow built-up glass compression members that are intended for use in the modular construction of all glass, compression-dominant, shell-type structures. The proposed compression-dominant geometric form has been developed using the methods of form finding and three-dimensional graphical statics. This research takes the first steps towards a new construction methodology for glass structures where individual hollow glass units (HGU) are assembled using an interlocking system to form large, compression-dominant, shell-type structures, thereby exploiting the high compression strength of glass. In this study, an individual HGU has an elongated hexagonal prism shape and consists of two deck plates, two long side plates, and four short side plates, as is shown in Figure 1. Connections between glass plates are made using a two-sided transparent structural adhesive tape. The test matrix includes four HGUs, two each fabricated with 1 mm and 2 mm thick adhesive tape. All samples are dimensioned 64 cm on the long axis of symmetry, 51 cm on the short axis of symmetry, and are 10 cm in width. Glass plates are all 10 mm thick annealed float glass with geometric fabrication done using 5-axis abrasive water jet cutting. HGU assembly is accomplished using 3D printed truing clips and results in a rigid three-dimensional glass frame. Testing was done with the HGU oriented such that load was introduced on the short side edges of the two deck plates, resulting in an asymmetric load-support condition. A soft interface material was used between the HGU and steel plates of the hydraulic actuator and support for the purpose of avoiding premature cracking from local stress concentrations on the glass edges at the load and support locations. Force was applied in displacement control at 0.25 mm/minute with a full array of displacement and strain sensors. Test results for load vs. center deck plate transverse deflection are shown in Figure 2. All samples failed explosively by flexural buckling with no premature cracking on the load and support edges of the deck plates. Strain and deformation data clearly show the presence of second-order behavior resulting from bending deformation perpendicular to the plane of the deck plates. In general, linear axial behavior transitions to nonlinear second-order behavior, with increasing rates in deflection and strain growth, ultimately ending in glass fracture on the tension surfaces of the buckled deck plates. The failure resulted in near-complete disintegration of the deck plates, but with no observable cracking in any side plates and a secure connection on all adhesive tape. Results of the experimental program clearly demonstrate the feasibility of using HGUs for modular construction of compression dominant all-glass shell-type structures. This method of construction can significantly reduce the self-weight of the structure, and it will inspire the use of sustainable materials in the construction of efficient structures.more » « less
An official website of the United States government

Full Text Available